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Abstract
The centre-of-mass system for N bodies admits a natural SO(3) action, and
thereby is stratified into strata according to the orbit types for the SO(3) action.
The principal stratum consists of non-singular configurations for which the
isotropy subgroup is trivial, so that it is made into an SO(3) principal fibre
bundle. The strata of lower dimension consist of singular configurations
at each of which the isotropy subgroup is not trivial. Practically, singular
configurations are collinear ones and simultaneous multiple collision. Classical
Lagrangian and Hamiltonian systems are defined on the tangent and the
cotangent bundles over each stratum, respectively. The Euler–Lagrange and
the Hamilton equations for the N-body system are derived on the variational
principle, according to the stratification of the centre-of-mass system. The
reduction procedure will be accordingly performed for the Lagrangian and the
Hamiltonian systems with symmetry, respectively. By the rotational symmetry,
the Euler–Lagrange and the Hamilton equations are reduced to those defined
on reduced bundles from the tangent and the cotangent bundles, respectively.

PACS numbers: 02.40.−k, 31.15.−p

1. Introduction

This paper deals with the stratified reduction of classical systems for many bodies. A key idea
to the stratified reduction is as follows: consider a manifold M and a compact Lie group G
which acts on M, where M is supposed to be a configuration space for a classical system and
the Lie group to describe symmetry of the classical system, respectively. According to the
orbit types of the group action, the manifold M is stratified into strata. Classical mechanics
will be set up on the tangent or the cotangent bundle over each stratum, and the reduction
procedure will be performed for the classical system on each tangent or cotangent bundle on
account of symmetry. The reduced system by symmetry and the reduced equations of motion
are to be defined on vector bundles over respective quotient spaces of the strata.
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This idea will be realized for a classical N-body system. Let M and G be the centre-of-
mass system for N bodies and the rotation group SO(3), respectively. Then M is stratified
into strata according to the orbit types for the SO(3) action. The principal stratum consists of
non-singular configurations for which the isotropy subgroup is trivial, so that it is made into an
SO(3) principal fibre bundle. The strata of lower dimension consist of singular configurations
at each of which the isotropy subgroup is not trivial. Practically, singular configurations are
collinear ones and simultaneous multiple collision.

For non-singular configurations, one (T Iwai) of the authors performed the reduction
procedure in the bundle picture [1–6] for classical and quantum mechanics of N-body
systems. From a physical point of view, the gauge-theoretical reduction theory was set up for
N-body systems in [7], while singular configurations have received little attention. However,
mechanics for singular configurations will be able to be treated apart from non-singular
configurations. In other words, mechanics will be set up on each stratum of the centre-of-mass
system. Then the reduction procedure by symmetry will be carried out for classical systems on
respective strata. The reduction procedure has already been performed for quantum N-body
systems [8, 9]. This paper deals with the stratified reduction for classical N-body systems in
both the Lagrangian and the Hamiltonian formalisms. The symplectic reduction for classical
N-body systems was already studied in [1] for non-singular configurations.

A classical Lagrangian system is defined on the tangent bundle over the configuration
space. The reduction procedure by symmetry has been investigated thoroughly in the
Lagrangian formalism on the variational principle by Cendra, Marsden and Ratiu [10] (see
also [11]). The Lagrangian reduction is related also to the study of non-holonomic mechanics
[12, 13]. The cotangent bundle reduction [14] is in keeping with Hamiltonian mechanics. This
article carries out the reduction procedure for N-body systems in both the Lagrangian and the
Hamiltonian formalisms, but the reduction procedure is stratified according to the stratification
of the centre-of-mass system. For geometric mechanics, the reference books [15–18] are of
great help. The geometry in the calculus of variations is exposed in [19–21].

If the Lagrangian defined on the tangent bundle over each stratum is rotationally invariant,
the Lagrangian system will reduce to a system defined on the factor space by SO(3). The
factor space is isomorphic with a vector bundle and will be referred to as the reduced
bundle. The Euler–Lagrange equations on the tangent bundle over each stratum then reduce
to those equations on the reduced bundle. In a similar manner, Hamilton’s equations of
motion defined on the cotangent bundle over each stratum are reduced to those on a reduced
bundle by rotational symmetry. The Lagrangian and the Hamiltonian reduction procedures
are comparable to each other. While the reduced equations in the Hamiltonian formalisms
are described on the reduced bundle, this reduced bundle is not equal to the reduced phase
space resulting from the original cotangent bundle in the process of symplectic reduction. The
reduced bundle can be restricted to a subspace which is diffeomorphic with the reduced phase
space.

This paper is organized as follows. Section 2 contains a brief review of geometric settings
on the centre-of-mass system of N bodies. Local coordinate systems are introduced in the
principal stratum (i.e., the space of non-singular configurations), and a connection form and
a metric are defined and expressed in terms of the local coordinates. In section 3, the Euler–
Lagrange equations are derived for the non-singular configurations on the variational principle.
Further, for a rotationally-invariant Lagrangian, the reduced Euler–Lagrange equations are
given. Section 4 deals with collinear configurations. The Euler–Lagrange equations are
derived on the variational principle and then reduced with the rotational symmetry. In
sections 5 and 6, the equations of motion are derived for the non-singular and for the collinear
configurations, respectively, on the variational principle in the Hamiltonian formalism, and
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then reduced with the rotational symmetry. In section 7, the Euler–Lagrange equations for
three-body systems are treated explicitly. It will be shown that by imposing some constraints
on coordinates, velocities and components of the angular momentum, the equations of motion
for non-singular configurations can reduce, in the limit, to those for collinear configurations.
Section 8 contains remarks on the covariant derivatives which are used in describing reduced
equations of motion, and on Hamel’s approach to the Euler–Lagrange equation [22, 23].

2. Geometric settings

Following [9], we make a brief review of geometric settings on the centre-of-mass system.
Getting rid of the translational degrees of freedom, we take the centre-of-mass system M for
an N-body system, which is isomorphic with R3(N−1);

M =
x = (x1, . . . ,xN)

∣∣∣ N∑
j=1

mjxj = 0

∼= R3(N−1), (2.1)

where xj ∈ R3 and mj, j = 1, . . . , N are position vectors and masses of particles,
respectively. We introduce Jacobi vectors, rj , j = 1, . . . , N − 1, which are defined to
be

rj :=
(

1

µj

+
1

mj+1

)− 1
2

(
xj+1 − 1

µj

j∑
i=1

mixi

)
, µj :=

j∑
i=1

mi. (2.2)

Then, the isomorphism M ∼= R3(N−1) is realized as

M ∼= {x = (r1, . . . , rN−1)|rj ∈ R3, j = 1, . . . , N − 1}. (2.3)

We call M a configuration space. When x is viewed as a 3 × (N − 1) matrix, according to its
rank, the configuration space is decomposed into

M = M0 ∪ M1 ∪ M2 ∪ M3, (2.4)

Mk := {x ∈ M|rank x = k}, k = 0, 1, 2, 3. (2.5)

The rotation group SO(3) acts on M in a natural manner;

x �−→ gx = (gr1, . . . , grN−1), g ∈ SO(3). (2.6)

The SO(3) action determines an equivalence relation on M, yielding a quotient space M/SO(3).
We denote by π the natural projection,

π : M −→ M/SO(3). (2.7)

The space M/SO(3) is called a shape space, which may fail to be a manifold.
We here denote the isotropy subgroup at x ∈ M and the SO(3)-orbit through x by

Gx := {g ∈ SO(3)|gx = x} and by Ox := {gx|g ∈ SO(3)}, respectively. Then one can verify
that the isotropy subgroups Gx are classified as follows:

Gx =


{e} for x ∈ M2 ∪ M3,

SO(2) for x ∈ M1,

SO(3) for x ∈ M0.

(2.8)

Accordingly, the orbits Ox are also classified into three:

Ox
∼= SO(3)/Gx

∼=


SO(3) for x ∈ M2 ∪ M3,

S2 for x ∈ M1,

{0} for x ∈ M0.

(2.9)
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Thus, M is stratified into a union of strata:

M = Ṁ ∪ M1 ∪ M0. (2.10)

A configuration x ∈ M is called non-singular or singular, according as x ∈ Ṁ or
x ∈ ∂Ṁ = M\Ṁ . If rank x = 0, all particles collide at a point simultaneously, and if
rank x = 1, the configuration of the particles is collinear.

Since each stratum is SO(3) invariant, we are allowed to make M into a stratified fibre
bundle with respective projections

Ṁ −→ Ṁ/SO(3), M1 −→ M1/SO(3), M0 −→ M0/SO(3) (2.11)

whose fibres are Ox
∼= SO(3)/Gx , given by (2.9). In particular, Ṁ is made into a principal

fibre bundle.
The inertia tensor, Ax : R3 → R3, is defined through

Ax(v) =
N−1∑
j=1

rj × (v × rj ), v ∈ R3, (2.12)

and the connection form ω is defined for x ∈ Ṁ to be

ω = R

A−1
x

N−1∑
j=1

rj × drj

 , (2.13)

where R : R3 → so(3) is the isomorphism defined by

R(a)x = a × x, a,x ∈ R3. (2.14)

Note that A−1
x exists only for x ∈ Ṁ . The connection form ω determines a direct sum

decomposition of the tangent space to Ṁ at x ∈ Ṁ:

Tx(Ṁ) = Vx ⊕ Hx, (2.15)

where Vx := Tx(Ox), the tangent space to Ox , and Hx := ker ωx with ωx : Tx(Ṁ) → so(3).
Tangent vectors in Vx and in Hx are called rotational (or vertical) and vibrational (or horizontal),
respectively. Further, Vx and Hx are orthogonal to each other with respect to the metric

ds2 =
N−1∑
j=1

drj · drj . (2.16)

We introduce local coordinates in Ṁ to express the connection form and the metric. Let σ

be a local section defined on an open subset U of Q̇; σ : U → Ṁ . Then any point x ∈ π−1(U)

is expressed as

x = gσ(q) = (gσ1(q), . . . , gσN−1(q)), g ∈ SO(3), q ∈ U. (2.17)

Let g ∈ SO(3) and q ∈ U be assigned by the Euler angles (φ, θ, ψ) and by local shape
coordinates qα, α = 1, . . . , 3N − 6, respectively. Then the connection form ω is put in the
form

ωgσ(q) = dgg−1 + gωσ(q)g
−1 = g(g−1 dg + ωσ(q))g

−1, (2.18)

where

ωσ(q) := R

A−1
σ(q)

N−1∑
j=1

σj (q) × dσj (q)

 . (2.19)

Let ea, a = 1, 2, 3, be the standard basis of R3. We introduce left-invariant 1-forms 	a on
SO(3) by
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g−1 dg =
3∑

a=1

	aR(ea), (2.20)

and define 
a
α(q) by expressing (2.19) as

ωσ(q) =
3∑

a=1

3N−6∑
α=1


a
α(q) dqαR(ea). (2.21)

Then the connection form ω given by (2.18) takes the form

ωgσ(q) =
3∑

a=1

�aR(gea), �a := 	a +
3N−6∑
α=1


a
α(q) dqα. (2.22)

The horizontal lift,
(

∂
∂qα

)∗
, of a local vector field ∂

∂qα on U is shown to be given by(
∂

∂qα

)∗
= ∂

∂qα
−

3∑
a=1


a
α(q)Ka, α = 1, 2, . . . , 3N − 6, (2.23)

where Ka denote the left-invariant vector fields on SO(3), which are dual to 	a . The dqα,�a

and the
(

∂
∂qα

)∗
,Ka form local bases of 1-forms and of vector fields on π−1(U)∼= U × SO(3),

respectively. They are dual to each other.
According to the orthogonal decomposition (2.15), we can express metric (2.16) in terms

of dqα,�a as

ds2 =
∑
α,β

aαβ dqα dqβ +
∑
a,b

Aab�
a�b, (2.24)

where we have introduced the notation aαβ and Aab by

aαβ := ds2

((
∂

∂qα

)∗
,

(
∂

∂qβ

)∗)
, (2.25)

Aab := ea · Aσ(q)(eb) = ds2(Ka,Kb). (2.26)

We note here that (aαβ) defines a Riemannian metric on Ṁ/SO(3).
In conclusion of this section, we give the transformation law for local expressions of

the connection form and of the inertia tensor. Let σ ′ : U ′ → Ṁ be another local section
with U ′ ∩ U 
= ∅. Then there exists an SO(3)-valued function h(q) ∈ SO(3) such that
σ ′(q) = h(q)σ (q), q ∈ U ′ ∩ U . From (2.18), it then follows that

ωσ ′(q) = dh h−1 + hωσ(q)h
−1, (2.27)

which provides the transformation law


′
α(q) = ∂h

∂qα
h−1 + h
α(q)h−1, (2.28)

where

ωσ ′(q) =
∑

α


′
α(q) dqα, ωσ(q) =

∑
α


α(q) dqα. (2.29)

Moreover, the transformation law for the inertia tensor A = (Aab) is given by

A′ = hAh−1, (2.30)

where

A′ = (A′
ab), A′

ab := ea · Aσ ′(q)(eb). (2.31)
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3. Lagrangian mechanics for non-singular configurations

In this section, we derive Euler–Lagrange equations for the non-singular configurations on
the variational principle. Further, for a rotationally-invariant Lagrangian, we obtain reduced
Euler–Lagrange equations by the use of SO(3) symmetry.

Let (q, g, q̇, ġ) be local coordinates on T (π−1(U)), where (q, g) ∈ π−1(U) and
(q̇, ġ) ∈ Tσ(q)(π

−1(U)) with q = (qα), q̇ = (q̇α). In view of the connection form �a

given by (2.22), we introduce an so(3)-valued variable by

 = ξ +
3N−6∑
α=1


α(q)q̇α, (3.1)

where

ξ = g−1ġ, 
α(q) =
3∑

a=1


a
α(q)R(ea). (3.2)

We further denote by π the vector associated with ,

R(π) = . (3.3)

We take (q, g, q̇,) as local coordinates in T (π−1(U)). Assume that we are given a
Lagrangian L(q, g, q̇,). We wish to obtain the Euler–Lagrange equations for L on the
basis of the variational principle, which will be determined by

δ

∫ t2

t1

L(q, g, q̇,) dt = 0 (3.4)

with the boundary conditions

δq(ti) = 0, δg(ti) = 0, i = 1, 2. (3.5)

The variation of L is expressed as

δL =
∑

α

∂L

∂qα
δqα +

∑
α

∂L

∂q̇α
δq̇α +

〈
∂L

∂g
, δg

〉
+

〈
∂L

∂
, δ

〉
, (3.6)

where we have denoted the inner product of 3 × 3 matrices A and B by

〈A,B〉 := tr(AT B). (3.7)

Note here that ∂L
∂

and ∂L
∂π

are related by

R

(
∂L

∂π

)
= 2

∂L

∂
, (3.8)

which implies that

∂L

∂π
· δπ =

〈
∂L

∂
, δ

〉
. (3.9)

Since the variation δ is put in the form

δ = [ξ, g−1δg] +
d

dt
(g−1δg) +

∑
α,β

(
∂
β

∂qα
− ∂
α

∂qβ

)
q̇βδqα +

d

dt

(∑
α


αδqα

)
, (3.10)

and since the variation of L with respect to g is brought into the form〈
∂L

∂g
, δg

〉
= 1

2

〈
g−1 ∂L

∂g
−
(

∂L

∂g

)T

g, g−1δg

〉
, (3.11)
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it turns out after calculation that the Euler–Lagrange equations are given by

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
=
〈

∂L

∂
,
∑

β

Kαβq̇β

〉
−
〈
∂L

∂
, [,
α]

〉

− 1

2

〈
g−1 ∂L

∂g
−
(

∂L

∂g

)T

g,
α

〉
, (3.12a)

d

dt

∂L

∂
=
[

∂L

∂
,

]
−
∑

β

[
∂L

∂
,
β

]
q̇β +

1

2

(
g−1 ∂L

∂g
−
(

∂L

∂g

)T

g

)
, (3.12b)

where Kαβ are the curvature tensors defined by

Kαβ := ∂
β

∂qα
− ∂
α

∂qβ
− [
α,
β]. (3.13)

We now point out that the Euler–Lagrange equations are described independently of
the choice of local sections. Let σ ′ : U ′ → Ṁ be another local section such that
σ ′(q) = h(q)σ (q), h(q) ∈ SO(3), for q ∈ U ′ ∩ U 
= ∅. As referred to in the previous
section, the 
α and Aσ(q) transform according to (2.28) and (2.30), respectively. From the
transformation law for 
α , one can verify that the transformation laws of the curvature tensor
and of the variable  are given by

K ′
αβ = h(q)Kαβh−1(q), (3.14)

′ = h(q)h−1(q), (3.15)

respectively. Since L(q, g, q̇,) = L′(q, g′, q̇,′) on T (U ∩ U ′), one verifies that the
Euler–Lagrange equations (3.12) are described independently of the choice of local sections.

Proposition 3.1. The Euler–Lagrange equations for the non-singular configurations are given
by (3.12), which are independent of the choice of local sections U → Ṁ .

Assume now that L is invariant under the left SO(3) action, i.e., L is rotationally invariant,

L(q, q̇, hg,) = L(q, q̇, g,) for all h ∈ SO(3). (3.16)

Note here that  is left-invariant. Then this equation with h = etη, η ∈ so(3), is differentiated
with respect to t at t = 0 to provide

d

dt
L(q, q̇, etηg,)

∣∣∣∣
t=0

=
〈
∂L

∂g
, ηg

〉
= 1

2

〈
∂L

∂g
g−1 − g

(
∂L

∂g

)T

, η

〉
= 0. (3.17)

Since η ∈ so(3) is arbitrary, one obtains ∂L
∂g

g−1 − g
(

∂L
∂g

)T = 0, so that

g−1 ∂L

∂g
−
(

∂L

∂g

)T

g = 0. (3.18)

From (3.16), L will reduce to a function L∗(q, q̇,) on the reduced bundle

T Ṁ/SO(3)∼= T (Ṁ/SO(3)) ⊕ G̃, (3.19)

where the right-hand side is a Whitney sum bundle, and G̃ denotes the vector bundle associated
with the adjoint action of SO(3) on G, G̃ := Ṁ ×SO(3) G with G = so(3) (see [10, 11] for
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the reduced bundle). From (3.12) and (3.18), the reduced Euler–Lagrange equations take the
form

d

dt

(
∂L∗

∂q̇α

)
− ∂L∗

∂qα
=
〈

∂L∗

∂
,
∑

β

Kαβq̇β

〉
−
〈
∂L∗

∂
, [,
α]

〉
, (3.20a)

d

dt

∂L∗

∂
=
[
∂L∗

∂
,

]
−
∑

β

[
∂L∗

∂
,
β

]
q̇β . (3.20b)

From (3.20b), which is also put in the form d
dt

∂L∗
∂

= [ ∂L∗
∂

, ξ
]
, it follows that

d

dt

(
g

∂L∗

∂
g−1

)
= 0. (3.21)

Proposition 3.2. If the Lagrangian is rotationally invariant, the Euler–Lagrange equations
for the non-singular configurations reduce to (3.20), which are defined on the reduced bundle
(3.19). The reduced Euler–Lagrange equations are independent of the choice of local sections
U → Ṁ . Further, the quantity g ∂L∗

∂
g−1 is conserved.

For non-singular configurations, a rotationally-invariant Lagrangian is given, from the
kinetic metric (2.24), by

L∗ = 1

2

∑
α,β

aαβ q̇αq̇β +
1

2

∑
a,b

Aabπ
aπb − V (q), (3.22)

where aαβ and Aab are, respectively, the Riemannian metric and the inertia tensor given by
(2.25) and (2.26), and πa are the components of , = ∑

a πaR(ea), and where V (q)

denotes a potential function depending on q only. We now rewrite the right-hand side of the
above equation in terms of  with R(π) = . On introducing the inertia tensor on so(3) by

Ãσ(q) := RAσ(q)R
−1, (3.23)

the Lagrangian is put in the form

L∗ = 1

2

∑
α,β

aαβ q̇αq̇β +
1

4
〈, Ãσ(q)〉 − V (q). (3.24)

Then, the reduced Euler–Lagrange equations (3.20) turn out to be expressed, in vector notation,
as

d

dt
q̇α +

∑
β,γ

�α
βγ q̇β q̇γ +

∑
β

aαβ ∂V

∂qβ

=
∑
β,γ

aαβ

(
Aσ(q)π · κβγ q̇γ +

1

2
π ·
(

∂Aσ(q)

∂qβ
− [
β,Aσ(q)]

)
π

)
, (3.25a)

d

dt
(Aσ(q)π) = Aσ(q)π × π −

∑
α

Aσ(q)π × λαq̇α, (3.25b)

where καβ and λα are vectors determined through

Kαβ = R(καβ), 
α = R(λα), (3.26)
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and where �α
βγ denote the Christoffel symbols formed from aαβ ,

�α
βγ := 1

2

∑
δ

aαδ

(
∂aδγ

∂qβ
+

∂aδβ

∂qγ
− ∂aβγ

∂qδ

)
, (aαβ) = (aαβ)−1. (3.27)

Proposition 3.3. For non-singular configurations, the reduced Euler–Lagrange equations for
Lagrangian (3.24) are expressed, in vector notation, as (3.25a) and (3.25b). Note that the
right-hand side of equation (3.25a) describes a generalized Lorentz force and a centrifugal
force. Equation (3.25b) is a generalization of the Euler equation for a rigid body to one for
deformable configurations.

We note here that the conserved quantity g ∂L∗
∂

g−1 is half the total angular momentum. In
fact, one has

g
∂L∗

∂
g−1 = 1

2
gR(Aσ(q)π)g−1 = 1

2
R(gAσ(q)π) = 1

2
R(L), (3.28)

where

L =
∑

j

rj × ṙj = gAσ(q)π, (3.29)

as is easily shown.
We further make remarks on covariant derivatives appearing in (3.25). From the

transformation laws (2.28) and (2.30), it follows that

∂A′

∂qα
− [
′

α, A′] = h(q)

(
∂A

∂qα
− [
α,A]

)
h−1(q), (3.30)

which implies that ∂A
∂qα − [
α,A] is the covariant derivative of A with respect to ∂

∂qα . The
covariant derivation along a curve q(t) is defined by

D

dt
:= d

dt
−
∑

α


αq̇α =
∑

α

q̇α D

∂qα
, (3.31)

so that equation (3.25b) can be expressed as

D

dt
(Aσ(q)π) = Aσ(q)π × π. (3.32)

In section 8, we will make remarks on covariant derivation in more detail.
We conclude this section with a comment on the expression of our Lagrangian. If we take

(q, g, q̇, ξ) as local coordinates of T Ṁ , then the Lagrangian is put in the form

L∗ = 1

2

∑
α,β

aαβ q̇αq̇β +
1

2

(
Ω +

∑
α

λαq̇α

)
· Aσ(q)

(
Ω +

∑
α

λαq̇α

)
− V (q), (3.33)

where R(Ω) = ξ and π = Ω +
∑

α λαq̇α . This description of the Lagrangian is usually
adopted in the physics literature [7].

4. Lagrangian mechanics for collinear configurations

In this section, we work with the space of collinear configurations M1. As referred to in section
2, the orbit of SO(3) through x ∈ M1 is identified with S2. Though M1 is not a principal fibre
bundle, we can decompose the tangent space to M1 at x ∈ M1 into a direct sum of vertical and
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horizontal subspaces; the vertical subspace V (1)
x is defined to be the tangent space to the orbit

Ox , and the horizontal subspace H(1)
x to be the orthogonal complement of V (1)

x ;

Tx(M1) = V (1)
x ⊕ H(1)

x , V (1)
x := Tx(Ox), H (1)

x := (V (1)
x

)⊥
, (4.1)

where the metric on M1 with respect to which the orthogonality is referred is induced from
that on the centre-of-mass system M.

Let σ̃ (ζ ) be a local section in M1; σ̃ : Ũ ⊂ M1/S
2 → M1, which is given by

σ̃ (ζ ) = (ζ 1e3, . . . , ζ
N−1e3), ζ = (ζ α) ∈ Ũ , (4.2)

where ζ α are local shape coordinates in Ũ ⊂ M1/S
2. Then a generic point x ∈ M1 is

expressed as

x = gσ̃ (ζ ) = (ζ 1ge3, . . . , ζ
N−1ge3), g ∈ SO(3). (4.3)

We express g as g = eφR(e3)eθR(e2)eψR(e3). Then x is assigned by local coordinates (θ, φ,

ζ 1, . . . , ζN−1), ψ being eliminated. Hence, we may view g as g = eφR(e3)eθR(e2) in this
section. Now the induced metric d̃s2 on M1 is expressed as

d̃s2 =
N−1∑
α=1

(ζ α)2(sin2 θ dφ2 + dθ2) +
N−1∑
α=1

(dζ α)2. (4.4)

See [9] for details.
Let (ζ,u, ζ̇ , u̇) be local coordinates in the tangent bundle T M1, where ζ = (ζ α), ζ̇ = (ζ̇ α)

and where

u = ge3, g = eφR(e3)eθR(e2). (4.5)

By introducing an so(3)-valued varable ξ̃ and a vector-valued variable Ω̃ through

ξ̃ = g−1ġ = R(Ω̃), (4.6)

the u̇ is expressed also as

u̇ = gξ̃e3 = gR(Ω̃)e3 = g(Ω̃ × e3). (4.7)

In view of this, we introduce an so(3)-valued variable ̃ by

̃ := R(Ω̃ × e3) = [g−1ġ, R(e3)]. (4.8)

We take (ζ,u, ζ̇ , ̃) as local coordinates in T M1. We wish to derive the Euler–Lagrange
equation for a Lagrangian L = L(ζ,u, ζ̇ , ̃) on the variational principle. The variation of L
is put in the form

δL =
∑

α

∂L

∂ζα
δζ α +

∑
α

∂L

∂ζ̇ α
δζ̇ α +

∂L

∂u
· δu +

〈
∂L

∂̃
, δ̃

〉
. (4.9)

Since |u| = 1, the infinitesimal variation δu should be restricted. We can rewrite the variation
of L with respect to u as

∂L

∂u
· δu = 1

2

〈
P̃

(
R

(
g−1 ∂L

∂u

))
, [g−1δg, R(e3)]

〉
, (4.10)

where P̃ is the projection operator defined on so(3) through

P̃R = RP, P := I − e3e
T
3 . (4.11)

Alternatively, P̃ is given by

P̃ (η) = [R(e3), [η,R(e3)]] , for η ∈ so(3). (4.12)
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Since

2u · δu = 2e3 · g−1δge3 = 〈R(e3), [g−1δg, R(e3)]〉 = 0, (4.13)

the constraint |u| = 1 has been taken into account in (4.10). We note further that

[g−1δg, R(e3)] = sin θδφR(e2) + δθR(e1), (4.14)

which shows that the variation [g−1δg, R(e3)] may take arbitrary values in P̃ so(3). The
variation δ̃ is put in the form

δ̃ = [[̃ξ, g−1δg], R(e3)] +

[
d

dt
(g−1δg), R(e3)

]
. (4.15)

This means that P̃ (δ̃) = δ̃, i.e., the R(e3)-component of δ̃ vanishes. From (4.10) and
(4.15), the Euler–Lagrange equations prove to be given by

d

dt

(
∂L

∂ζ̇ α

)
− ∂L

∂ζα
= 0, (4.16a)

P̃

(
d

dt

∂L

∂̃
−
[
P̃

(
∂L

∂̃

)
, ξ̃

]
− 1

2
R

(
g−1 ∂L

∂u

))
= 0, (4.16b)

[
P̃

(
∂L

∂̃

)
, ̃

]
= 0, (4.16c)

where (4.16c) is a constraint to be required. There are two ways to take local sections σ̃ : Ũ →
M1; one is σ̃ (ζ ) = (ζ 1e3, . . . , ζ

N−1e3), and the other σ̃ ′(ζ ′) = (−ζ ′1e3, . . . ,−ζ ′N−1e3).
Hence, the transformation law is given by ζ ′α = −ζ α . Since metric (4.4) is invariant under
the inversion ζ α �→ −ζ α, ζ̇ α �→ −ζ̇ α , so is equation (4.16).

Proposition 4.1. The Euler–Lagrange equations for the collinear configurations are given by
(4.16), which are independent of the choice of local sections Ũ → M1.

We now assume that the Lagrangian is rotationally invariant,

L(ζ, etR(a)u, ζ̇ , ̃) = L(ζ,u, ζ̇ , ̃) for all R(a) ∈ so(3). (4.17)

Note here that ̃ is left-invariant. From (4.17), it follows that

d

dt
L(ζ, etR(a)u, ζ̇ , ̃)|t=0 = R(a)u · ∂L

∂u
= a ·

(
u × ∂L

∂u

)
= 0, (4.18)

so that

u × ∂L

∂u
= g

(
e3 × g−1 ∂L

∂u

)
= 0. (4.19)

This implies that

P̃

(
R

(
g−1 ∂L

∂u

))
= 0. (4.20)

From (4.17), L will reduce to a function L∗(ζ, ζ̇ , ̃) on the reduced bundle

T M1/SO(3)∼= T (M1/SO(3)) ⊕ G̃1, (4.21)

where G̃1 is a vector bundle over M1/SO(3) with the standard fibre P̃ so(3). Owing to (4.20),
the Euler–Lagrange equations (4.16) reduce to

d

dt

(
∂L∗

∂ζ̇ α

)
− ∂L∗

∂ζ α
= 0, (4.22a)
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P̃

(
d

dt

∂L∗

∂̃
−
[
P̃

(
∂L∗

∂̃

)
, ξ̃

])
= 0, (4.22b)

[
P̃

(
∂L∗

∂̃

)
, ̃

]
= 0. (4.22c)

We now consider a conservation law in an analogous manner to the case of non-singular
configurations. Equations (4.22b), (4.22c) give rise to

d

dt

(
g

[
P̃

(
∂L∗

∂̃

)
, R(e3)

]
g−1

)
= 0, (4.23)

which implies that the angular momentum is conserved, as will be shown soon.

Proposition 4.2. If the Lagrangian is rotationally invariant, the Euler–Lagrange equations
for the collinear configurations reduce to (4.22), which are defined on the reduced bundle
(4.21). Further, the quantity g

[
P̃
(

∂L∗
∂̃

)
, R(e3)

]
g−1 is conserved.

From (4.4), a Lagrangian for collinear configurations is shown to be given by

L∗ = 1

2

∑
α

(ζ̇ α)2 +
1

2
ρ(ζ )|Ω̃ × e3|2 − V1(ζ ), ρ(ζ ) =

∑
α

(ζ α)2, (4.24)

where V1 is a potential function. This Lagrangian is rotationally invariant. Rewriting the
second term of the right-hand side of the above equation in terms of ̃, we obtain the
Lagrangian in the form

L∗ = 1

2

∑
α

(ζ̇ α)2 +
1

4
ρ(ζ )〈̃, ̃〉 − V1(ζ ). (4.25)

Since P̃
(

∂L∗
∂̃

) = 1
2 P̃ (ρ(ζ )̃) = 1

2ρ(ζ )̃, one has[
P̃

(
∂L∗

∂̃

)
, ̃

]
= 0. (4.26)

The Euler–Lagrange equations (4.22) prove to be put in the vector form,
d

dt
ζ̇ α +

∂V1

∂ζ α
= ζ α|Ω̃ × e3|2, (4.27a)

d

dt
(ρ(ζ )Ω̃ × e3) = P((ρ(ζ )Ω̃ × e3) × Ω̃). (4.27b)

If we adopt local coordinates (ζ α, θ, φ, ζ̇ α, θ̇ , φ̇) to express the Lagrangian, then equation
(4.27b) can be shown to be equivalent to

d

dt

∂L

∂φ̇
− d

dt

∂L

∂φ
= 0,

d

dt

∂L

∂θ̇
− d

dt

∂L

∂θ
= 0. (4.28)

The conserved quantity g
[
P̃
(

∂L∗
∂̃

)
, R(e3)

]
g−1 is written out as

g

[
P̃

(
∂L∗

∂̃

)
, R(e3)

]
g−1 = −1

2
R(gM̃ ), (4.29)

where we have set

M̃ := ρ(ζ )P (Ω̃) = ρ(ζ )e3 × (Ω̃ × e3). (4.30)

We note here that gM̃ and M̃ are the total angular momentum in the space frame and in the
body frame, respectively;

gM̃ = gρ(ζ )(e3 × (Ω̃ × e3)) = ρ(ζ )u × u̇. (4.31)
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5. Hamiltonian mechanics for non-singular configurations

In this section, we derive the equations of motion for the non-singular configurations on the
variational principle in the Hamiltonian formalism.

In section 3, we have taken (q, g, q̇,) as local coordinates in T Ṁ . Given a Lagrangian
L(q, g, q̇,), we define the generalized momenta (p,M) conjugate to the (q̇,) to be

pα = ∂L

∂q̇α
, M = 2

∂L

∂
, (5.1)

respectively. Note here that the factor 2 in the definition of M is necessary, because this
definition gives rise to

M = R(M) with M := ∂L

∂π
. (5.2)

We take (q, g, p,M) as local coordinates in T ∗Ṁ . Then, the Hamiltonian H(q, g, p,M) is
given by

H(q, g, p,M) =
∑

α

pαq̇α +
1

2
〈M,〉 − L(q, g, q̇,), (5.3)

where we note that
1

2
〈M,〉 = M · π. (5.4)

We are going to obtain the equations of motion for H on the basis of the variational principle
applied to ∫ t2

t1

(∑
α

pα

dqα

dt
+

1

2
〈M,〉 − H(q, g, p,M)

)
dt (5.5)

with the boundary conditions

δq(ti) = 0, δg(ti) = 0, δp(ti) = 0, δM(ti) = 0, i = 1, 2. (5.6)

We note here that Hamilton’s equations can be obtained without the boundary conditions for
δp and δM at t = ti . These boundary conditions are added only for further development
of the theory in the Hamiltonian formalism. In a similar manner to that in the Lagrangian
formalism, Hamilton’s equations of motion are obtained as follows:

q̇α = ∂H

∂pα

,  = 2
∂H

∂M
, (5.7a)

ṗα +
∂H

∂qα
= 1

2

〈
M,

∑
β

Kαβ

∂H

∂pβ

〉
− 1

2

〈
M,

[
2

∂H

∂M
,
α

]〉

+
1

2

〈
g−1 ∂H

∂g
−
(

∂H

∂g

)T

g,
α

〉
, (5.7b)

Ṁ =
[
M, 2

∂H

∂M

]
−
∑

α

[M,
α]
∂H

∂pα

−
(

g−1 ∂H

∂g
−
(

∂H

∂g

)T

g

)
. (5.7c)

Like (3.12), Hamilton’s equation of motion (5.7) can be proved to be independent of the choice
of local sections U → Ṁ .
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Proposition 5.1. The equations of motion for the non-singular configurations in the
Hamiltonian formalism are expressed as (5.7), which are independent of the choice of local
sections U → Ṁ .

Assume that H is invariant under the left SO(3) action,

H(q, hg, p,M) = H(q, g, p,M) for all h ∈ SO(3). (5.8)

Note that  is left-invariant and so is M. Then, for h = etη with η ∈ so(3), equation (5.8) is
differentiated with respect to t at t = 0 to provide

d

dt
H(q, etηg, p,M)

∣∣∣∣
t=0

=
〈
∂H

∂g
, ηg

〉
= 1

2

〈
∂H

∂g
g−1 − g

(
∂H

∂g

)T

, η

〉
= 0. (5.9)

Since η ∈ so(3) is arbitrary, one obtains ∂H
∂g

g−1 − g
(

∂H
∂g

)T = 0, so that

g−1 ∂H

∂g
−
(

∂H

∂g

)T

g = 0. (5.10)

From the rotational invariance, the H will reduce to a function H ∗(q, p,M) on

T ∗Ṁ/G∼= T ∗(Ṁ/G) ⊕ G̃∗, (5.11)

where the right-hand side is a Whitney sum bundle, and G̃∗ denotes the covector bundle
associated with the co-adjoint action of SO(3) on G∗ ∼= so(3), G̃∗ := Ṁ ×GG∗ (see [14, 18]
for cotangent bundle reduction). From (5.7) and (5.10), the reduced equations of motion are
described as

q̇α = ∂H ∗

∂pα

,  = 2
∂H ∗

∂M
, (5.12a)

ṗα +
∂H ∗

∂qα
= 1

2

〈
M,

∑
β

Kαβ

∂H ∗

∂pβ

〉
− 1

2

〈
M,

[
2
∂H ∗

∂M
,
α

]〉
, (5.12b)

Ṁ =
[
M, 2

∂H ∗

∂M

]
−
∑

α

[M,
α]
∂H ∗

∂pα

. (5.12c)

From (5.12c), which is expressed also as Ṁ = [M, ξ ], it follows that the quantity gMg−1

is conserved. In fact, one easily verifies that

d

dt
(gMg−1) = 0. (5.13)

Hence, M is put in the form M = g−1ζg with a constant ζ ∈ so(3)∗ ∼= so(3). This implies
that M is tracking on a coadjoint orbit in each fibre of G̃∗. According to [14], the symplectic
leaves of T ∗Ṁ/G are given by J

−1(O)/G for each coadjoint orbit O in G∗ ∼= so(3), where
J = gMg−1 in the present case. Further, J

−1(O)/G is canonically diffeomorphic to the
reduced phase space J

−1(µ)/Gµ, where µ ∈ O and where Gµ denotes the isotropy subgroup
at µ [18].

Proposition 5.2. If the Hamiltonian is rotationally invariant, the equations of motion for
the non-singular configurations in the Hamiltonian formalism reduce to (5.12). Further, the
quantity gMg−1 is conserved.
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We now derive the equations of motion for an N-particle system. Given the Lagrangian
(3.24), we obtain, by (5.3), the Hamiltonian

H ∗ = 1

2

∑
α,β

aαβpαpβ +
1

4
〈M, Ã−1M〉 + V (q), Ã−1 = RA−1R−1. (5.14)

Note here that

pα =
∑

β

aαβ q̇β, M = Ã. (5.15)

Then the reduced equations of motion (5.12) are equivalently written in vector notation as

q̇α =
∑

β

aαβpβ, π = A−1M , (5.16a)

ṗα −
∑
β,γ,µ

aβµ�γ
µαpγ pβ +

∂V

∂qα
=
∑
β,γ

M · καβaβγ pγ − 1

2
M ·

(
∂A−1

∂qα
− [
α,A−1]

)
M ,

(5.16b)

dM

dt
−
∑
α,β

aαβpαλβ × M = M × A−1M , (5.16c)

where καβ and λα were defined in (3.26). Since gMg−1 = R (gM ), the total angular
momentum L = gM is conserved. The quantity ∂A−1

∂qα − [
α,A−1] is viewed as the covariant

derivative of A−1.
To compare Hamilton’s equations of motion with the Euler–Lagrange equations, the

following equation is of great help:

DA−1

∂qα
M · M + π · DA

∂qα
π = 0, (5.17)

which can be proved by the use of the fact that 
αA + A
α is an anti-symmetric matrix. It is
easy to show that (5.16b) with the first equation of (5.16a) are equivalent to (3.25a) and that
(5.16c) with the second equation of (5.16a) is equivalent to (3.25b).

In conclusion of this section, we make a comment on momentum variables. If we had
started with the Lagrangian of the form (3.33), we would have obtained the momentum variable
in the form

pα = ∂L∗

∂q̇α
=
∑

β

aαβ q̇β + λα · Aσ(q)

Ω +
∑

β

λβ q̇β

 , (5.18)

which is usually adopted in the physics literature [7].

6. Hamiltonian mechanics for collinear configurations

In this section, we derive the equations of motion for collinear configurations on the variational
principle in the Hamiltonian formalism.

We have taken (ζ,u, ζ̇ , ̃) as local coordinates in T M1 in section 4. Let L(ζ,u, ζ̇ , ̃) be
a Lagrangian on T M1. We define the generalized momenta (�,M̃) conjugate to the (ζ̇ , ̃)

to be

�α = ∂L

∂ζ̇ α
, M̃ = 2

∂L

∂̃
, (6.1)
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respectively. We now take (ζ,u,�,M̃) as local coordinates in T ∗M1. Then the Hamiltonian
H(ζ,u,�,M̃) is given by

H(ζ,u,�,M̃) =
∑

α

�αζ̇ α +
1

2
〈M̃, ̃〉 − L(ζ,u, ζ̇ , ̃). (6.2)

The equations of motion for H will be obtained on the basis of the variational principle applied
to ∫ t2

t1

(∑
α

�α

dζ α

dt
+

1

2
〈M̃, ̃〉 − H(ζ,u,�,M̃)

)
dt (6.3)

with the boundary conditions

δζ(ti) = 0, δg̃(ti) = 0, δ�(ti) = 0, δM̃(ti) = 0, i = 1, 2. (6.4)

It then turns out that Hamiltonian equations of motion are put in the form

ζ̇ α = ∂H

∂�α

, ̃ = 2
∂H

∂M̃
, (6.5a)

�̇α = − ∂H

∂ζα
, (6.5b)

P̃

(
˙̃M − [P̃ (M̃), ξ̃ ] + R

(
g̃−1 ∂H

∂u

))
= 0, (6.5c)[

P̃ (M̃), 2
∂H

∂M̃

]
= 0, (6.5d)

where (6.5d) is a constraint to be required.

Proposition 6.1. The equations of motion for collinear configurations in the Hamiltonian
formalism are expressed as (6.5), which are independent of the choice of local sections
Ũ → M1.

We now assume that H is rotationally invariant,

H(ζ, etR(a)u,�,M̃) = H(ζ,u,�,M̃) for all R(a) ∈ so(3). (6.6)

Note that ̃ is left-invariant and so is M̃. From (6.6), it follows that

d

dt
H(ζ, etR(a)u,�,M̃)

∣∣∣∣
t=0

= R(a)u · ∂H

∂u
= a ·

(
u × ∂H

∂u

)
= 0, (6.7)

so that

u × ∂H

∂u
= g̃

(
e3 × g̃−1 ∂H

∂u

)
= 0. (6.8)

This implies that

P

(
g̃−1 ∂H

∂u

)
= 0. (6.9)

From (6.6), H will reduce to a function H ∗(ζ,�, ̃) on

T ∗(M1/SO(3)) ⊕ G̃∗
1 , (6.10)

where G̃∗
1 is a covector bundle over M1/SO(3). From (6.9), Hamilton’s equations of motion

(6.5) reduce to
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ζ̇ α = ∂H ∗

∂�α

, ̃ = 2
∂H ∗

∂M̃
, (6.11a)

�̇α = −∂H ∗

∂ζ α
, P̃ ( ˙̃M − [P̃ (M̃), ξ̃ ]) = 0, (6.11b)

[
P̃ (M̃), 2

∂H ∗

∂M̃

]
= 0. (6.11c)

Proposition 6.2. If the Hamiltonian is rotationally invariant, Hamilton’s equations of motion
for collinear configurations reduce to (6.11), which are defined on the reduced bundle (6.10).

Given Lagrangian (4.25), we obtain, from (6.2), the Hamiltonian

H ∗ = 1

2

∑
α

� 2
α +

1

4ρ(ζ )
〈M̃,M̃〉 + V1(ζ ). (6.12)

Since M̃ = ρ(ζ )̃, and hence P̃ (M̃) = M̃, equation (6.11c) is satisfied. The reduced
equations of motion are then put in vector form

ζ̇ α = �α, Ω̃ × e3 = 1

ρ(ζ )
M̃ , (6.13a)

�̇α = ζ α

ρ(ζ )2
|M̃ |2 − ∂V1

∂ζ α
,

d

dt
M̃ = P(M̃ × Ω̃), (6.13b)

where M̃ = R(M̃ ). Note that equations (6.13) are equivalent to (4.27).

7. Three-body systems

In this section, we wish to study the Euler–Lagrange equations around collinear configurations.
For simplicity, we specialize in three-body systems. In the same manner as in quantum systems
[9], we introduce internal coordinates (q1, q2, q3) by

q1 = r1, q2 = r2 cos ϕ, q3 = r2 sin ϕ, (7.1)

where

r1 = ‖r1‖, r2 = ‖r2‖, r1 · r2 = r1r2 cos ϕ, (7.2)

and define a local section σ(q) = (σ1(q),σ2(q)) by

σ1(q) = q1e3, σ2(q) = q2e3 + q3e1. (7.3)

We note here that subscript indices are used in describing local coordinates. Though the
local section σ is defined originally on an open subset U of Q̇ = Ṁ/SO(3), i.e., two shape
coordinates q1 and q3 on the open subset U must be restricted to positive numbers, we can
take (q1, q2, q3) as local coordinates beyond U,

{(q1, q2, q3)|q1 � 0, q3 � 0} . (7.4)

Then we have collinear configurations if q3 = 0, and the configurations that two of three
particles collide but the remainder is separate, if q1 = 0. If q1 = q2 = q3 = 0, we have a
triple collision.
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Let g ∈ SO(3) be expressed as g = eφR(e3)eθR(e2)eψR(e3) in terms of the Euler angles.
Then, from (7.3), the Jacobi vectors are expressed as

gσ1(q) = eφR(e3)eθR(e2)q1e3 (7.5a)

gσ2(q) = eφR(e3)eθR(e2)(q2e3 + q3 cos ψe1 + q3 sin ψe2). (7.5b)

If q3 → 0, the local coordinates of Ṁ reduce to those of M1; (q1, q2, q3, φ, θ, ψ) →
(q1, q2, φ, θ).

From definition (2.12) along with (7.3), the inertia tensor and its inverse at σ(q) are put,
respectively, in the form

Aσ(q) =

q2
1 + q2

2 0 −q2q3

0 q2
1 + q2

2 + q2
3 0

−q2q3 0 q2
3

 , (7.6)

A−1
σ(q) =


1
q2

1
0 q2

q2
1 q3

0 1
q2

1 +q2
2 +q2

3
0

q2

q2
1 q3

0 q2
1 +q2

2

q2
1 q2

3

 . (7.7)

From (2.19), (7.3) and (7.7), the connection form (2.19) proves to be expressed as

ωσ(q) = q2 dq3 − q3 dq2

q2
1 + q2

2 + q2
3

R(e2). (7.8)

Thus, the vectors, λα, α = 1, 2, 3 associated with ωσ(q) =∑α R(λα) dqα are put in the form

λ1 = 0, λ2 = − q3

q2
1 + q2

2 + q2
3

e2, λ3 = q2

q2
1 + q2

2 + q2
3

e2, (7.9)

respectively. From this and (3.1)–(3.3), it follows that

π = Ω +
q2q̇3 − q3q̇2

q2
1 + q2

2 + q2
3

e2. (7.10)

From (3.13) and (7.9), the curvature tensors καβ, α, β = 1, 2, 3, are calculated as

κ11 = κ22 = κ33 = 0, κ12 = −κ21 = 2q1q3(
q2

1 + q2
2 + q2

3

)2 e2,

(7.11)

κ23 = −κ32 = 2q2
1(

q2
1 + q2

2 + q2
3

)2 e2, κ31 = −κ13 = 2q1q2(
q2

1 + q2
2 + q2

3

)2 e2.

The metric tensor and its inverse are expressed, respectively, as

(aαβ) =


1 0 0

0 q2
1 +q2

2

q2
1 +q2

2 +q2
3

q2q3

q2
1 +q2

2 +q2
3

0 q2q3

q2
1 +q2

2 +q2
3

q2
1 +q2

3

q2
1 +q2

2 +q2
3

 , (7.12)
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(aαβ) =


1 0 0

0 q2
1 +q2

3

q2
1

− q2q3

q2
1

0 − q2q3

q2
1

q2
1 +q2

2

q2
1

 . (7.13)

See [9] for details. Then the Christoffel symbols �α
βγ are calculated, from (3.27) with (7.12),

(7.13) as

�1
22 = − q1q

2
3(

q2
1 + q2

2 + q2
3

)2 , �1
33 = − q1q

2
2(

q2
1 + q2

2 + q2
3

)2 ,

�1
23 = �1

32 = q1q2q3(
q2

1 + q2
2 + q2

3

)2 , �2
22 = − q2q

2
3(

q2
1 + q2

2 + q2
3

)2 ,

�2
33 = q2

(
2q2

1 + q2
2 + 2q2

3

)(
q2

1 + q2
2 + q2

3

)2 , �2
12 = �2

21 = q2
3

q1
(
q2

1 + q2
2 + q2

3

) ,
�2

13 = �2
31 = − q2q3

q1
(
q2

1 + q2
2 + q2

3

) , �2
23 = �2

32 = − q3
(
q2

1 + q2
3

)(
q2

1 + q2
2 + q2

3

)2 , (7.14)

�3
22 = q3

(
2q2

1 + 2q2
2 + q2

3

)(
q2

1 + q2
2 + q2

3

)2 , �3
33 = − q2

2q3(
q2

1 + q2
2 + q2

3

)2 ,

�3
12 = �3

21 = − q2q3

q1
(
q2

1 + q2
2 + q2

3

) , �3
13 = �3

31 = q2
2

q1
(
q2

1 + q2
2 + q2

3

) ,
�3

23 = �3
32 = − q2

(
q2

1 + q2
2

)(
q2

1 + q2
2 + q2

3

)2 , �α
βγ = 0 (otherwise).

Thus, the vibrational part (3.25a) of the reduced Euler–Lagrange equations for the three-body
system is written out as

d

dt
q̇1 − q1(q3q̇2 − q2q̇3)

2(
q2

1 + q2
2 + q2

3

)2 +
∂V

∂q1
= q1

(
π2

1 + π2
2

)
+

2q1(q3q̇2 − q2q̇3)

q2
1 + q2

2 + q2
3

π2, (7.15a)

d

dt
q̇2 − q2q̇3 − q3q̇2

q2
1 + q2

2 + q2
3

(
2(q3q̇1 − q1q̇3)

q1
+

q2(q2q̇3 − q3q̇2)

q2
1 + q2

2 + q2
3

)
+

q2
1 + q2

3

q2
1

∂V

∂q2
− q2q3

q2
1

∂V

∂q3

= q2
(
π2

1 + π2
2

)
+

2q3

q2
1

(
q2q3

(
π2

1 − π2
3

)
+
(
q2

2 − q2
3

)
π1π3

)
− 2π2

(
q3q̇1 − q1q̇3

q1
+

q2(q2q̇3 − q3q̇2)

q2
1 + q2

2 + q2
3

)
, (7.15b)

d

dt
q̇3 − q2q̇3 − q3q̇2

q2
1 + q2

2 + q2
3

(
2(q1q̇2 − q2q̇1)

q1
+

q3(q2q̇3 − q3q̇2)

q2
1 + q2

2 + q2
3

)
− q2q3

q2
1

∂V

∂q2
+

q2
1 + q2

2

q2
1

∂V

∂q3

= q3
(
π2

2 + π2
3

)− 2q2

q2
1

(
q2q3

(
π2

1 − π2
3

)
+
(
q2

1 + q2
2 − q2

3

)
π1π3

)
− 2π2

(
q1q̇2 − q2q̇1

q1
+

q3(q2q̇3 − q3q̇2)

q2
1 + q2

2 + q2
3

)
. (7.15c)
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The rotational part (3.25b) becomes

d

dt

(q2
1 + q2

2

)�1

�2

0

 +
d

dt

 −q2q3�3

q2
3�2 + q2q̇3 − q3q̇2

−q2q3�1 + q2
3�3


= (q2

1 + q2
2

) �2�3

−�1�3

0

 + q2
3

 0
�1�3

−�1�2


+ q2q3

 �1�2

�2
1 + �2

3

−�2�3

 + (q2q̇3 − q3q̇2)

 �3

0
−�1

 . (7.16)

Assume now that equation (7.16) is compatible with the collinear constraint q3 = 0. Then
it reduces to

d

dt

(q2
1 + q2

2

)�1

�2

0

 = (q2
1 + q2

2

) �2�3

−�1�3

0

 , (7.17)

which is equivalent to the rotational part (4.27b) of the Euler–Lagrange equations for the
collinear configurations. Note here that Ω reduces to Ω̃ as q3 tends to q3 = 0.

We now try to impose the constraint q3 = 0 on the vibrational part (7.15) of the Euler–
Lagrange equations for non-singular configurations. From (7.15) with q3 = 0, we obtain

d

dt
q̇1 +

∂V

∂q1
= q1

(
π2

1 + π2
2

)
, (7.18a)

d

dt
q̇2 +

∂V

∂q2
= q2

(
π2

1 + π2
2

)
, (7.18b)

q2
1 + q2

2

q2
1

∂V

∂q3
= −2q2

(
q2

1 + q2
2

)
q2

1

π1π3 − 2(q1q̇2 − q2q̇1)

q1
π2. (7.18c)

Since π = Ω if q3 = 0, equations (7.18a) and (7.18b) coincide with equation (4.27a)
for collinear configurations. If the constraints π3 = 0 and q1q̇2 − q2q̇1 = 0 are satisfied
furthermore, and if the potential V has the property such that ∂V

∂q3
= 0 at q3 = 0,

equation (7.18c) holds true. The constraint π3(=�3) = 0 means that the angular momentum
has a vanishing component around the axis of three-body alignment. The constraint
q1q̇2 − q2q̇1 = 0 implies that ṙ1//ṙ2. It then turns out that collinear motion can take
place if the conditions �3 = 0 and q1q̇2 − q2q̇1 = 0 are satisfied as well as q3 = 0, and if the
potential V has the property such that ∂V

∂q3
= 0 at q3 = 0.

8. Remarks

In this section, we make remarks on the covariant derivatives which were used in describing
the reduced equations of motion and on the Euler–Lagrange equations from the viewpoint of
Hamel [22, 23].

8.1. Covariant derivatives

The group SO(3) is represented in R3 in a natural manner. The product space Ṁ × R3 is
endowed with the equivalence relation by (x, v) ∼ (gx, gv) with g ∈ SO(3). The factor
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space Ṁ ×SO(3) R3 becomes a vector bundle over Ṁ/SO(3). A vector field V is called an
equivariant vector field on Ṁ , if it transforms according to V hx = hV x for h ∈ SO(3).
The set of equivariant vector fields is in one-to-one correspondence with the set of sections in
Ṁ×SO(3)R3; s(π(x)) = [(x,V x)]. We denote the correspondence by s = γV . The covariant
derivative of the local section s with respect to a vector field X on Ṁ/SO(3) is defined by

∇Xs = γX∗(γ −1s), (8.1)

where X∗ is the horizontal lift of X.
For a local section σ : U → Ṁ and an equivariant vector field V , one has x = gσ(q),

and hence

s(π(x)) = [(x,V x)] = [(σ (q),V σ(q))]. (8.2)

This implies that one can view V σ(q) as a local section in the vector bundle Ṁ ×SO(3) R3,
and that V σ(q) transforms as V σ ′(q) = hV σ(q), where σ ′(q) = h(q)σ (q). We now calculate
the covariant derivative of a local section q �→ vq = V σ(q) with respect to ∂

∂qα . For the
equivariant vector field V , its derivative with respect to Ka is given by

(KaV )x = d

dt
V g exp(tR(ea))σ (q)

∣∣∣∣
t=0

= Adg(R(ea))V x,

so that ∑
a


a
αKaV = Adg(
α)V . (8.3)

Then the horizontal derivative of V with respect to
(

∂
∂qα

)∗
is expressed as(

∂

∂qα

)∗
V =

(
∂

∂qα
−
∑

α


a
αKa

)
V = Adg

(
∂

∂qα
⊗ I − 
α

)
V . (8.4)

Restricting
(

∂
∂qα

)∗
V on σ(q), we obtain

(∇∂/∂qαs)(q) =
[(

σ(q),

((
∂

∂qα
− 
α

)
V

)
σ(q)

)]
, (8.5)

which implies that the covariant derivative of a local section v is given by(
∂

∂qα
− 
α

)
v. (8.6)

Note that the vector bundle Ṁ ×SO(3) R3 is identified with the adjoint bundle G̃ =
Ṁ ×SO(3) G, which is defined through the equivalence relation (x, ξ) ∼ (gx, Adgξ).

Let Sym(3, R) denote the space of real symmetric 3 × 3 matrices, on which SO(3) acts
in the manner S �→ gSg−1 for g ∈ SO(3). A Sym(3, R)-valued function T on Ṁ is called
equivariant, if it transforms according to

Thx = hTxh
−1, h ∈ SO(3). (8.7)

The set of Sym(3, R)-valued equivariant functions is in one-to-one correspondence with the
set of sections in the tensor bundle Ṁ ×SO(3) Sym(3, R). We denote the correspondence by
s = γ T . Then the covariant derivative of the section s with respect to a vector field X on
Ṁ/SO(3) is defined by

∇Xs = γX∗(γ −1s), (8.8)

where X∗ is the horizontal lift of X.
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For a local section σ : U → Ṁ and an equivariant function T, one has

s(π(x)) = [(x, Tx)] = [(σ (q), Tσ(q))], (8.9)

which means that we may look on Tσ(q) as a local section in Ṁ ×SO(3) Sym(3, R). For the
equivariant function T, its derivative with respect to Ka is given by

(KaT )x = d

dt
Tg exp(tR(ea))σ (q)

∣∣∣∣
t=0

= [AdgR(ea), Tx], (8.10)

so that ∑
a


a
αKaT = [Adg
α, T ]. (8.11)

Then the horizontal derivative of T is given by(
∂

∂qα

)∗
T = ∂T

∂qα
− [Adg
α, T ]. (8.12)

Restricting
(

∂
∂qα

)∗
T on σ(q), we obtain

∇∂/∂qα s(q) =
[(

σ(q),

(
∂T

∂qα
− [
α, T ]

)
σ(q)

)]
. (8.13)

Hence, the covariant derivative of the inertia tensor A = Aσ(q), a local section in
Ṁ ×SO(3) Sym(3, R), is given by

DA

∂qα
= ∂A

∂qα
− [
α,A] . (8.14)

8.2. Hamel’s approach

We show that the Euler–Lagrange equations (3.12) can also be derived from the Euler–
Lagrange equations of the usual form. Let θλ and Xλ be local bases of 1-forms and of vector
fields on an open subset W of Rn, which are given by

θλ =
∑

µ

Aλ
µ dxµ, Xλ =

∑
µ

B
µ
λ

∂

∂xµ
(8.15)

with ∑
µ

Aλ
µBµ

ν = δλ
ν ,

∑
λ

Aλ
µBκ

λ = δκ
µ. (8.16)

Then one has, after differentiation,

dθλ =
∑
ν<ρ

γ λ
ρνθ

ν ∧ θρ, γ λ
ρν :=

∑
κ,µ

(
∂Aλ

µ

∂xκ
− ∂Aλ

κ

∂xµ

)
Bκ

ν Bµ
ρ , (8.17)

where γ λ
ρν are called the Hamel symbols [22]. Now introducing the variable πλ by

πλ =
∑

µ

Aλ
µẋµ,

and replacing local coordinates (x, ẋ) in T W by (x, π), we can express the Lagrangian L(x, ẋ)

as

L̃(x, π) = L(x, ẋ). (8.18)
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Then the Euler–Lagrange equations described in terms of (x, ẋ)

d

dt

∂L

∂ẋλ
− ∂L

∂xλ
= 0 (8.19)

are put in the form

d

dt

∂L̃

∂πν
+
∑
µ,ρ

γ µ
νρ

∂L̃

∂πµ
πρ − Xν(L̃) = 0. (8.20)

We wish to apply this type of equation to the Lagrangian for a multi-particle system.
The dqα,�a and the

(
∂

∂qα

)∗
,Ka form local bases of 1-forms and of vector fields on T Ṁ ,

respectively. Since the left-invariant 1-forms 	a on SO(3) satisfy the structure equations

d	c = −1

2

∑
a,b

εabc	
a ∧ 	b, (8.21)

the exterior derivative of �c takes the form

d�c = −
∑
a<b

εabc�
a ∧ �b +

∑
a,α

∑
b

εabc

b
α�a ∧ dqα +

∑
α<β

κc
αβ dqα ∧ dqβ, (8.22)

where

κc
αβ := ∂
c

β

∂qα
− ∂
c

α

∂qβ
−
∑
a,b

εabc

a
α
b

β, (8.23)

which are components of the curvature tensor Kαβ given in (3.13). The exterior derivative of
dqα vanishes. Thus, one obtains the Hamel symbols in the form

γ c
ba = −εabc, γ c

αa =
∑

b

εabc

b
α, γ c

βα = κc
αβ,

γ α
λµ = 0 for λ,µ ∈ {a, α}.

(8.24)

We now write out the Euler–Lagrange equations (8.20) with the Hamel symbols (8.24) in
terms of the local coordinates qα, g, q̇α, πa of T Ṁ ,

d

dt

∂L̃

∂q̇α
+
∑
α,β

κa
βα

∂L̃

∂πa
q̇β +

∑
a,b

∑
c

εabc

c
α

∂L̃

∂πa
πb − Xα(L̃) = 0, (8.25a)

d

dt

∂L̃

∂πa
−
∑
b,c

εabc

∂L̃

∂πb
πc −

∑
b,α

∑
c

εacb

c
α

∂L̃

∂πb
q̇α − Xa(L̃) = 0. (8.25b)

We note here that

Ka(L̃) = d

dt
L̃(·, getR(ea), ·)

∣∣∣∣
t=0

= 1

2

〈
g−1 ∂L̃

∂g
−
(

∂L̃

∂g

)T

g, R(ea)

〉
, (8.26)

so that, for Xα = ( ∂
∂qα

)∗
and for Xa = Ka , we have

Xα(L̃) = ∂L̃

∂qα
− 1

2

〈
g−1 ∂L̃

∂g
−
(

∂L̃

∂g

)T

g,
α

〉
, (8.27a)

Xa(L̃) = 1

2

〈
g−1 ∂L̃

∂g
−
(

∂L̃

∂g

)T

g, R(ea)

〉
, (8.27b)
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respectively. Hence, the Euler–Lagrange equations (8.25) turn out to be expressed as

d

dt

∂L̃

∂q̇α
− ∂L̃

∂qα
=
∑

β

∂L̃

∂π
· καβ q̇β − ∂L̃

∂π
· (π × λα) − 1

2

〈
g−1 ∂L̃

∂g
−
(

∂L̃

∂g

)T

g,
α

〉
,

(8.28a)

d

dt

∂L̃

∂π
= ∂L̃

∂π
× π −

∑
α

∂L̃

∂π
× λαq̇α + R−1

(
g−1 ∂L̃

∂g
−
(

∂L̃

∂g

)T

g

)
, (8.28b)

which are equivalent to equation (3.12). Moreover, if the Lagrangian is rotationally invariant,
one has g−1 ∂L̃

∂g
− ( ∂L̃

∂g

)T
g = 0, so that the Euler–Lagrange equations (8.28) reduce to

d

dt

∂L̃

∂q̇α
− ∂L̃

∂qα
=
∑

β

∂L̃

∂π
· καβ q̇β − ∂L̃

∂π
· (π × λα), (8.29a)

d

dt

∂L̃

∂π
= ∂L̃

∂π
× π −

∑
α

∂L̃

∂π
× λαq̇α, (8.29b)

which are also equivalent to equation (3.20). For comparison, see also [4], in which �a and
Ka are replaced by ωa = g�ag−1 and Ja = ∑ gabKb, respectively, for the description of the
Euler–Lagrange equations.
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